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Received 15 January 1990 

Abstract. We study the asymptotic behaviour of a diffusion-controlled coarsening of grain 
boundaryprecipitates. Using an analogy to two-dimensional particle coarsening, we consider 
cooperative effects among precipitates occurring via the diffusion field. We discuss the finite 
volume fraction effects on the form of the precipitate size distribution function and the 
coarsening rate. 

The diffusion-controlled coarsening behaviour of precipitates situated on high-angle 
grain boundaries has first been studied by Speight and Kirchner (SK) [l]. In this 
coarsening process the transport of matter from the smaller to the larger precipitates 
occurs through a two-dimensional intervening medium, that is, grain boundaries. Solv- 
ing a cylindrically symmetric two-dimensional diffusion equation for solute atoms, they 
have obtained the t'I4-growth law of the average precipitate size and the asymptotic 
steady-state distribution function for precipitate size. They have, however, ignored the 
many-body effects among precipitates via the diffusion field, which has been shown to 
play important roles in two- [2-4] and three-dimensional [ 5 ]  particle coarsening, and in 
dislocation loop coarsening [6 ] .  Thus, in the present paper, we study such effects on this 
phenomenon by using an analogy to two-dimensional particle coarsening [ 2 ] .  In the 
following discussion, we assume that: (i) the equilibrium precipitate shape is a hemi- 
spherical cap of radius R symmetrically situated with respect to the boundary plane, as 
used by SK [l]; (ii) the assumption of local equilibrium at the precipitate surface is valid. 
Different types of boundary conditions will be discussed elsewhere; and (iii) the radius 
R is sufficiently larger than the capillary length a, which is defined below. 

To obtain the growth equation of a precipitate we must solve the two-dimensional 
diffusion equation for the concentration field of solute atoms C(r,  t ) :  

a 
at  
- C(r,  t )  = DV2C(r,  t )  

with boundary conditions 

C(r,  t )  + C(t) as Irl+ ( 2 )  

C(r ,  t )  = C,,(R) at the precipitate surface. (3 ) 

Here D is the diffusion coefficient of solute atoms, c(t) the bulk concentration at time 
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t ,  and C,, (R)  the local equilibrium concentration associated with a precipitate of radius 
R given by (the Gibbs-Thomson relation) 

C,, (R)  = Ce exp( a/R)  = C, (1 + a/R)  ( 4 )  
where C, is the equilibrium concentration associated with R = CQ. Moreover, a is the 
capillary length and is defined by a = 2yu/kB T where y is the surface energy per unit 
area of the precipitate-matrix interface, U is the atomic volume of a solute atom, and 
k B T  is the usual thermal energy. The steady-state solution of the above diffusion 
equation is 

C(r) = c1 + c2 loglrl ( 5 )  
with constants C1 and C2, and thus the boundary condition at infinity (2) cannot be 
satisfied. To resolve this problem, SK have introduced a cut-off distance which serves 
phenomenologically as an outer limit at which ( 2 )  is satisfied. Developing this ad hoc 
technique, Ardell has discussed many-body effects on this coarsening [ 7 ] .  

A similar situation occurs in two-dimensional particle coarsening [ 2 4 ] .  Recently, 
using a statistical mechanical method [8], Hayakawa and Family have proved the exist- 
ence of the screening length within which precipitates are correlated and have deter- 
mined it self-consistently [ 4 ] ,  Applying a similar analysis to the present phenomenon, 
we have obtained the growth equation of a hemispherical precipitate with radius R as 

2nA (d /dt)R3 = 2nwD (R/L(  t))G(R/L(t))( C(t)  - C,, (R) )  ( 6 )  
[91 

where A is a geometrical constant defined by SK, w is the width of the grain boundary, 
L ( f )  the screening length defined below in (ll), and K O  and K 1  are modified Bessel 
functions. Thus, the growth velocity can be written as 

(d/dt)R = gG(R/L(O)(R/Rc(t)  - M L ( t ) R 2 )  (8) 

g = a w D C e / 3 A  (9) 
where Rc(t) denotes the critical radius given by 

~c (t> = ace /(c(t) - Ce ) 
and is determined later from the mass conservation law. We should remark that in this 
case, the left hand side of ( 6 )  denotes the precipitate volume change, instead of the area 
change in two-dimensional particle coarsening [2-4] .  Accordingly, a self-consistent 
definition of L(t) for a small precipitate volume fraction is altered as [9] 

2 n ~ ~ ( t ) 3 n ( t )  = ~ , ( R ( t ) l ~ ( t ) ) .  (11) 

Here n(t)  is the number density of precipitates defined by 

n(t) = F ( R ,  t)  dR I 
I 

and R( t )  is the average radius defined by 

R( t )  = RF(R, t )  dR/n(t)  

where F(R, t )  denotes the precipitate size distribution function per unit volume 
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We assume that the distribution function F(R, t )  changes only by the growth or 
dissolution of precipitates. Thus, it obeys a continuity equation in R-space: 

The bulk concentration c(t) or the critical radius R,(t) are constrained by mass con- 
servation: 

(a/at)F(R,  t )  + (d/dR)[(dR/dt)F(R, t)] = 0. (12) 

c(t) = Ci, - 2nA 3 F  R, t )  dR (13) Joe ( 
where Ci, is the initial concentration. 

Now we discuss the asymptotic properties of this coarsening. Equations (8)-( 13) are 
formally analogous to those of [2]. Hence, we should quote only the final results omitting 
intermediate calculations. In general, the asymptotic form of the distribution is given 
by 

F(R, 9 = (n(t)/R(t))h(x) (14) 
where x is a relative precipitate radius defined by x = R/R(t), and h(x) denotes a relative 
size distribution function and is time-independent , satisfying a normalisation 

lox h(x) dx = 1. 

The time-dependent behaviour of the system is described by 
(R(t)I4 - (R(C))4 = (3/4I3gK(Q>t (15) 

n(t) = (Q/2~'cAm~)(g(t))-~ (16) 
F(R, t )  = (Q/2~Am~)h(x)(R(t))-~ (17) 

where R(0) is the initial average radius, K(Q)  the coarsening rate determined below in 
(20), and m3 the third moment defined by 

m3 = Joffi x3h(x) dx. 

From these results the present temporal power laws are found to be identical to those 
of the SK theory. On the other hand, we obtain h(x) as 

for x < xo 

for x 2 xo 
(18) 

(19) 

(" K ) )  exp( 4 Y  , K )  -l dY) 
0 lo h(x) = 

with 
Z(X, K )  = ( 4 / 3 ) 4 G ( ~ / ~ ) ( ~ / ~  - 1)/(K(Q)sx2) - x/3 

where the constant N is determined by 

loE h(x) dx = 1 

and the coarsening rate K(Q) and the cut-off x,, are determined, respectively, by 

In the long-time limit, two quantities, a = R,(t)/R(t) and s = L(t)/R(t) in (19) become 
time-independent , and are defined, respectively, by 

I(x, K )  = (d/dx)I(x, K )  = 0 f o r x = x o .  (20) 

a = lox xG(x/s)h(x) dx/jOe G(x/s)h(x) dx (21) 

s3/K1(1/~) = Q/m3. (22) 
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Figure 1. Coarsening rate K ( Q )  and cut-off x g  as 
a function of the volume fraction Q. 

Figure 2. Relative precipit_ate size distribution 
function h ( x )  versusx = R/R(t)  for Q = 0 (the SK 
theory), 0.05 andO.l. 

These quantities and the third moment m3 must be determined self-consistently for each 
value of Q. We should remark that in the present theory the radius R is scaled by the 
average radius R ( t ) ,  whereas in the SK theory R is scaled by the critical radius R, ( t )  with 
R,(t) = aR(t) .  In the dilute limit Q + 0, we have numerically checked that the present 
result approaches that of the SK theory. Numerical results for K ( Q ) ,  x o  and h(x)  are 
shown as a function of Q in figures 1 and 2, respectively. 

In summary, we have studied many-body effects on the coarsening of grain boundary 
precipitates by using an analogy to two-dimensional particle coarsening. Such effects 
are not found to alter the qualitative behaviour of the temporal power laws. However, 
with increasing precipitate volume fraction, Q ,  the coarsening rate K ( Q )  increases and 
the relative precipitate radius distribution function, h(x) ,  broadens. We should remark 
that even if Q is small, the dependence on Q of K ( Q )  and h(x)  is remarkable. Com- 
parisons of the present results with those of experiments and with the Ardell theory will 
be discussed in the future. 
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